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Abstract 
 

This paper presents a class of neural networks suitable for the application of 
decoding error-correcting codes.The neural model is basically a perceptron with a 
high-order polynomial as its discriminant function. A single layer of high-order 
perceptrons is shown to be able to decode a binary linear block code with at most 2m 
weights in each perceptron, where m is the parity length. For some subclass codes, the 
number of weights needed can be much less. The (2m-1,2m-1-m) Hamming code can be 
decoded with only m+1 weights in each perceptron. With the help of genetic algorithms, 
efficient neural decoders with 2t+1 terms for each bit for some t-error correctable 
cyclic and BCH codes are obtained. The neural decoders are formulated as a set of 
parity networks in the first layer followed by a linear perceptron in the second layer, 
and thus have simple implementations in analogy VLSI technology.  
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1. Introduction 
 

Error-correcting codes (ECCs), having wide applications in data transmission, data 
storage, and fault-tolerance computing, are to protect information from accidental 
errors [1][2]. A major class of ECCs is the class of linear block codes (LBCs). In an 
LBC, a string of information symbols is appended with some extra symbols, called 
parities, to form a codeword so as to separate each information vector further apart in 
the codeword space. Therefore, when a codeword is affected by some noise during 
transmission or processing, the decoder can correct the error by associating the noisy 
string with the nearest legal codeword.  

The error-correcting capability of an LBC is specified by its ”minimum distance”, 
which is the minimum Hamming distance [1] between any two codewords in the code. 
A systematic t-error correctable (n,k) block code is a code of minimum distance d≧

2t+1 having k information bits and n-k parity bits for each codeword. Depending on the 
mathematical structures imposed on a code, the class of LBCs contains the subclass of 
cyclic codes, which in turn contains the subclass of Bose-Chaudhuri-Hocquenghem 
(BCH) codes. The decoding algorithm for a t-error correctable (n,k) block codes, using 

syndrome-table method, requires looking up a table of size 
n
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cyclic codes, the decoding algorithm using Meggitt decodes [2] needs a table of size 
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. The class of BCH codes has a relatively effective decoding algorithm. 

An algorithm of 2tn time steps has been presented in [3], although specific code can be 
further optimized individually. 

An LBC can be described by matrix operations. Encoding of an LBC is completed 
by multiplying an information vector with the generator matrix. However, decoding of 
an LBC is generally more difficult than its encoding counterpart , because matrix 
inversion operation is involved . 

Neural networks (NNs) are powerful computational models that have attracted 
much attention in many applications [4]. However, the decoding problem poses a 
certain level of difficulty to most of the NN classifiers because there are a large number 
of categories to be classified and the classification requires very high precision so as to 
discriminate among patterns of only one Hamming distance from one to the others .We 
shall show, in this paper, that the decoding rules of a number of LBCs have a close 
connection with the class of high-order NNs. 

Previous works on the application of NNs for decoding ECCs include Hopfield 
nets for graph-theoretic codes [4], winner-take-all networks for the (24,12) Golay code 
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[5], Hamming nets, Counter-propagation networks (CPNs), and backpropagation 
networks (BPs) for Hamming codes [6][7].The decoding of a graph-theoretic code is 
formulated as a problem of searching for the global minimum of a corresponding energy 
function of Hopfield nets. Extension to higher-order energy function for decoding LBCs 
has also been considered in [4]. The winner-take-all networks (called n-flop Hopfield 
net in [5]) together with some other housekeeping logic are applied to implement the 
ideal soft-decision decoder for the (24,12) Golay code. The Hamming net [6], a 
minimum distance classifier, decodes Hamming codes in a direct way. It stores the 
legal codewords in the weights of each neuron , so the number of neurons equals the 
number of legal codewords . The CPN and BP decoders for (7,4) Hamming code [7] 
also requiring the number of hidden units equals to the number of legal codewords for 
reliable decoding . In other words, the complexities of the neural decoders given in [6] 
and [7] are in the order of 2n. 

The newly proposal approach to the decoding problem makes use of high-order 
perceptrons which have polynomials as their discriminant functions. The much-studied 
parity (exclusive-or) problem exhibits a certain level of difficulty for learning 
machines because similar inputs have to be classified into different categories. 
However, it can be shown that the parity function is isomorphic to a product term of 
bipolar variables. We apply high-order NNs, with the add of genetic algorithm, to 
decode ECCs in the hope that if they can solve the parity problem effectively, they can 
also solve the decoding problem without much difficulty. This is because decoding an 
ECC can be considered as a task of solving a set of implicity parity functions. 

The main problem of using high-order polynomial discriminants is to decide what 
order to use and which product terms to choose. In earlier works, application of 
discriminant polynomials to some other problems, such as associative memories [8] - 
problems that can be considered as a more general case of error -correcting problems, 
generally requires a full set of product terms for maintaining desirable performance, (2n 
weights, where n is the dimensionality of input vectors). The use of a full set of product 
terms in decoding ECCs does not make sense as n grows. This paper shows that the 
combination of high-order NNs and the simple genetic evolution is able to decode some 
short-length ECCs with computational cost less than those of the conventional digital 
decoders. 

The remainder of this paper is organized as follows. In the next section, we briefly 
describe the model of high-order NNs and the basic idea of genetic evolution. To show 
the feasibility of high-order NNs model, a possible realization by reducing them to 
multilayer perceptrons is presented. In section 3, a single layer of high-order 
perceptrons is proved to be able to decode an LBC with at most 2m weights in each 
perceptron, where m is the parity length. For some subclass of codes, the number of 
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weights needed can be much less. As a comparsion, we show that the class of 
single-error correcting (2m-1,2m-1-m) Hamming code can be decoded with only m+1 
weights for each bit. This result is much better than those of the [6] and [7], in which 2m 
-1 weights for each bit are required. Section 4 describes the use of genetic algorithms 
(GAs) to obtain better decoding structures for some cyclic and BCH codes. Finally, 
Section 5 presents our concluding remarks, where we indicate some possible 
extensions of our results. 

 
2. Preliminaries 
 
2.1 The High-Order Neural Networks  
 

The use of polynomial discriminant function in NNs can date back to 1960s and the 
network model is called φ-machine at that time [9] and sigma-pi unit [10][11], 

functional link net [12] or polynomial adaline (Padaline) [13], recently. We refer to it 
as high-order perceptron in this paper. The output function of a general perceptron is 
defined as  

z = sgn ( g(x) ) (1) 
In the above equation, X = [x1, x2,… ,xn] ∈ {1,-1}n is the input pattern, ‘sgn’ is the sign 
function : sgn(a) = 1 if a > 0, -1 if a < 0, and g, the so-called discriminant function , is 
an rth-order polynomial: 
 g(X) = w1f1(X) + w2f2(X) + …  + wNfN(X)+w0 (2) 
where w i are called weights and each product term fi(x) is of the form: xx xk

n
k
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k
n
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2...,k1, 

k2, …  , kr ∈ {1, … , n} and n1, n2, … , nr ∈{0,1}. A linear perceptron has a discriminant 
function of order r = 1. A perceptron with r > 1 is called a high-order perceptron. 
Currently most implementation techniques for NNs cover only linear perceptrons. To 
make high-order perceptrons feasible, a possible realization by reducing them to 
multilayer perceptrons  is shown below. 

A product term x1x2… xn of n bipolar variables is -1 if there is an odd number of 
-1’s in the variables and +1’s otherwise, which is isomorphic to the parity function of n 
binary elements. A two-layer linear perceptron for the parity problem has been 
presented in [10]. Here we reformulate the network such that its output is bipolar, 
weights are +1 or -1, thresholds are integers, and connection complexity is linear. 
Specifically, for n bipolar elements xi, define  

 S n xi
i

n

= −
=
∑
1

 (3) 

S ∈ {0,2,4, … , 2n}. let P denotes the parity function and let 

註解:  
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The value in the above square bracket is 2 if  S = 2(2k-1), and 0 otherwise. So P 
outputs -1 if there is an odd number of -1’s, and +1’s otherwise. Note this is a network 
whose output unit needs no hard-limiting function and thus can be immediately directed 
to the input of its succeeding layer. 

For the product of real numbers, we can write 
 xx x x x x x x xr r

n
r r r

n
r r r

n
rn n n

1 2 1 2 1 2
1 2 1 2 1 2...sgn()sgn()...sgn()||||...||=  (5) 

The sign part can be computed by the parity network, while the magnitude part can be 
recast into 

 | |...||exp(log(| |))x x xr
n
r

i

n

i
rn i

1
1

1 =
=

∑  (6) 

The operations of taking logarithm, exponential, and absolute values have simple 
implementations in analog VLSI technology [14]. So the high-order perceptrons, either 
with binary or real number inputs, can be realized using current existing techniques. 

The problem of using high-order perceptrons is the combinatorial increase in the 
number of terms with the order of the network. It was shown in [4] that a high-order 
perceptron with a full set of product terms (2n terms for n binary inputs) can 
dichotomize any complex training set. However, generating all combinations of n inputs 
becomes impractical as the input dimension grows. Thus, much effort in using 
high-order NNs for wider aplications focuses on determining a proper network 
structure for a given problem. Several approaches have been taken with satisfactory 
success: (i) encoding invariances into the networks [15][16], (ii)Expressing the 
solution in the form representable by high-order perceptrons [17], and (iii) Using 
robust search algorithms to find the proper product terms. The first two approaches 
depend on the infomation available for imbedding into the network structure. The third 
method generally requires choosing a set of terms among all possible22

n

candidates. 
Once the terms are chosen, the error surface is designate to be convex with respect 

to the weight variables. The weights hence can be determined by the pseudo-inverse 
method [18] or by a suitable learning rule. The pseudoinverse method finds an optimal 
solution in the least-mean-square error sense between the desired output and the actual 
output. However it requires intensive computation that is hard to afford. An alternative 
approach relies on the use of a learning algorithm such as the error-correcting 
procedure. The error-correction procedure is the earliest learning algorithm for linear 
perceptrons [9]. It can be readily applied to high-order perceptrons by considering the 
polynomial function as a fix expansion of the original pattern space, as shown below: 
 W’ = W + Y if g(X) ≦0 and X maps to 1 (7a) 
 W’ = W - Y if g(X) ≧0 and X maps to -1  (7b) 
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where W = [w1,w2, … , wN, w0] ∈ RN+1 is the weight vector, W’ is the new value of W, 
and Y = [f1(X),f2(X), … , fN(X),1] ∈{1,-1}N+1 is the expanded input vector. This 
learning rule is equivalent to the delta rule W’ = W + c(d-y)Y at c = 1/2, where d is the 
desired output, y is the network output, and c the step size. In addition, its convergence 
behavior is similar to that of the delta rule: it gradually although not monotonically 
reduces the error energy between the actual and the desired outputs. However, the 
error-correcting procedures is more favorable than the notable delta rule because it 
involves no tuning of the step size and leads to integer weights for binary inputs, a 
benefit that will become clear in the later sections. 
 
2.2 Genetic Algorithms and Simulated Annealing 
 

Genetic algorithm (GA) and simulated annealing (SA) are two kinds of useful 
stochastic techniques which can be used to solve optimization problems efficiently. SA 
is based on thermodynamics and can be viewed as an algorithm which generates a 
sequence of Markov chains to approach the optimal solutions of the problem [19]. This 
sequence of Markov Chains is controlled by a gradually decreasing temperature of the 
system. Theoretically, the probability distribution of the system configurations 
generated by SA will approach to the Boltzmann distribution [19] when the system has 
reached equilibrium at a certain fixed temperature. When the system temperature 
decreases gradually to zero, the probability distribution of the system configurations 
generated will tend to approach the set of optimal ones. Based on this fact, SA is able 
to find global minimum of the optimization problem theoretically. Nevertheless, the 
most important parameter of SA, called system temperature, is very difficult to control. 
Therefore, an efficient annealing schedule is hard to design. 

GAs are general purpose optimization techniques which borrow the spirit of natural 
selection from evolution theory. Based on natural selection, GA tries to inherit the 
genes with good fitness from generaton to generation. For eliminating the poor fitting 
candidates in each iteration, GA uses the reproduction plan to exhibit selection 
pressure, forcing bad ones hard to survive. In addition, GA applies genetic operations, 
such as crossover and mutation, to existing genes for surfing over the search space. 
Reproduction plans or genetic operators may behave in very different ways, but 
generally speaking, a typical GA often consists of a reproduction phase and a 
manipulation phase. The reproduction phase is responsible for exploiting the features of 
current candidates and reserving the well-behaved ones. The manipulation phase is 
reponsible for exploring the solution space and producing new possible candidates. 
Good GA tutorials can be found in [20] and [21]. 

Figure 1 shows the elementary structure of the simple genetic algorithm (SGA) [22] 



 7 

adopted in this paper. 
 
3. Decoding of Linear Block Codes 
 

The general idea of decoding an LBC can be described as follows. A systematic 
(n,k) code, in which there are k information bits and m = n-k parity bits for each 
codeword, can be represented by a parity-check matrix H = [hij]m×n, hij ∈ {0,1}. Let A = 
[a1,a2, … , ak] be an information word. After A being added with some parities and then 
transmitted, the receiving end receives a word V = [v1,v2, … , vn] probably with some 
errors in its bits. The received word V is then multiplied (mudulo2 ) by the 
parity-check matrix H to result in a syndrome vector S = VHT = [s1, s2, … , sm], where 

 ∑
=

=
n

k
ikki hvs

1

2 mod   (8) 

The syndrome S provides the information to decode the codewords V: If S is a zero 
vector, there would be no errors; the parity bits vi, i = k+1, k+2, … , n, are discarded 
and the information bits are directly accessed, i.e., ai = vi for i = 1, 2, … , k. If a single 
error occurs in bit vj, then S matches the jth column of H and the jth bit vj has to be 
complemented. For t-error correcting codes, if S matches the sum (in modulo 2) of P (P
≦t) columns of H, then the P bits corresponding to these constituent p columns of H are 

in error. This decoding rule can be expressed in a Boolean formula as 
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      (9) 
for j = 1, 2, … , k, where ¬, Π, ∑, and ⊕ are NOT, AND, OR, and exclusive-OR 
operations, respectively. With a direct transformation from the above expression to a 
discriminant polynomial, we have the following theorem. 
 

Theorem:  An (n,k) binary linear block code can be decoded by a high-order 
perceptron with no more than 2n-k terms for each bit. 

 
Proof: 

To simply the proof, let us first define two notations. Suppose a is a Boolean 
expression that results in a binary value and x and y are two expressions that result in a 
bipolar value and a real number, respectively. The notation a’ ↔x’ denotes the relation 
between a and x as a = 1 iff  x = -1, a = 0 iff  x = 1, while the notation a’ ⇔ y’ 
denotes a = 1 iff  y < 0 and a = 0 iff  y > 0. 

Lemma 1: If ai ↔ xi and hi ∈ {1,0} for i = 1, 2, … , n, then 
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Lemma 2: IF a ↔ x and h ∈ {1,0} is a binary value, then ¬a⊕h↔(2h-1)x. 
Lemma 3: If ai ↔ xi for i =1, 2, … , m, then 

 ∏∏ −
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Lemma 4: If ai ↔ xi for i =1, 2, … , n, then 

 ∑ ∏
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By assuming that the received bit vi and the bipolar variable xi satisfy the relation vi 
↔ xi the syndrome element si in (8) can be converted into a product term ti 

through lemma 1: 

 ∏
=

=
n

k

h
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1

  (10) 

i =1, 2, … , m. Then applying the above lemmas, Eqn. (9) can be cast into a 
discriminant polynomial gj(will be defined in (12)), each of the product term is of the 
form 
 xtt tj

r r
m
rm

1 2
1 2...  (11) 

Because tr11 reduces to 1 if r i is even and reduces to ti if ri is odd and because there are 

only m syndrome elements, the number of product terms in gj never exceeds 2m.  Q.E.D. 
 

The output of the above discrimiant gj is strictly either 1 or -1. For certain codes, 
the number of terms required can be much less if the value of gj is relaxed to be positive 
or negative. As an example, the (2m-1,2m-1-m) Hamming code can be decoded with 
m+1 terms in each discriminant polynomial: 

 ( )[ ] ( )g x h t mj j ij i
i

m

= − + −
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




=

∑ 2 1 1
1

        (12) 

which is converted from (8) by the following lemmas: 
 

Lemma 5: If ai ↔ xi for i = 1, ..., m, then 

 ( )a x mi
i

m

i
i

m

= =
∏ ∑⇔ + −
1 1

1 

Lemma 6: If a ↔ x and b ⇔y , then a⊕b ⇔ xy. 
The way of converting a decoding rule into a set of discriminant polynomials can 

take various forms for different codes. The Hamming code given above is an example, 
the Reed-Muller code presented in [23] is another. In the next section, we will present 
more decoding structures found by combining the high-order NN model and the SGA 
for some cyclic and BCH codes. 
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4. Decoding of Some Cyclic Codes 
 
4.1 The Neural Decoders 
 

The conventional decoding rules for cyclic and BCH codes have no direct 
transforms resulting in decoding structures representable by high-order perceptrons. To 
reduce the number of terms required, one depends on a robust optimization method and 
the method we choose is the genetic evolution. GAs [22][24] are more suitable for this 
structure-adaptation application than other major optimization methods such as 
gradient-based algorithms, enumeration, and random search due to several reasons. 
First, the search space of possible network structures is large, 22

n

possible network 
structures for n binary inputs. The use of enumeration method would be inefficient. 
Secondly, the performance surface is undifferentiable with respect to the change of used 
terms. Thus gradient-based searching that depends on the existence of derivatives 
becomes infeasible. Thirdly, different network structures can exhibit similar 
capabilities. Such multimodal surface would baffle most of the hill-climbing methods. 
Another more favorable reason for using GAs is that highly fit terms are less likely to 
be destroyed under the genetic operators  and thus often lead to faster convergence, 
especially when comparing with the method of SA. 

A GA begins with a randomly generated population of individuals, which are often 
bit-string encodings of potentail solutions to the concerned problem. Each individual is 
evaluated to show its fitness. High-fitness individuals receive a high selection 
probability for reproduction. Simple selection rule might use a roulette wheel to select 
an individual according to the percentage of its fitness over all population fitness. A 
number of genetic operators such as mutation and crossover, are applied to the selected 
individuals to produce new populations of the next generation. Crossover swaps the 
two mated individuals at a random crossing site with a crossover rate while mutation 
flips each bit at a predefined mutation rate. This process repeats until desired solutions 
emerged or a predetermined generation number has been reached. 

The performance of genetic algorithms has been analyzed and has been shown that 
better individuals are sampled and recombined to yield even better individuals, if the 
fitness function and genetic operators are properly defined. Below is the details of the 
network representation scheme, mutation, crossover, selection operators, and the way 
the fitness function is defined for the application of designing neural decoders. 

As shown in Eqn. (1), a high-order neural network is a set of independent 
discriminant polynomials. Representation of them in a GA is quite straightforward that 
can take various forms depending on which factors to be optimized. We choose to save 
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space complexity by representing a term with an integer which often take 32 bits in a 
machine. The presence of an input variable i in a term is represented by an one in bit i, 
and the absence is denoted as a zero. In such a scheme a discriminant polynomial is 
represented by an integer array. This representation facilitates the mutation operator by 
simply replacing a term with a random number ranging from 1 to 2n-1. If there are more 
input variables, the integer representation of a term can be extended to an integer array, 
the size of which depends on the number of bits required. A discriminant polynomial is 
then a two-dimensional integer array. The mutation operator is slightly modified to 
avoid generating a product term with all bits zero in its representation. 

Before presenting the crossover operator, let us examine the weights learned by the 
error-correction procedure in more details. Assume there  are k patterns in the training 
set. Define a number Ci as the number of training patterns which have fi(X) the ith 
product term concide with their desired output, i.e., fi(X) > 0 if X maps to 1 and fi(X) < 
0 if X maps to -1. A presentation of all the training patterns to a learning algorithm is 
called an iteration. If the error-correcting rule learns all the training patterns in an 
iteration, the weight wi will increase by an amount of 2Ci-k. The larger the Ci, the larger 
the weight wi. Thus beginning from zero, a resultant large weight after a number of 
iterations implies that its corresponding product term concides with the output of most 
training patterns. If there are many such product terms in a discrimant polynomial, this 
polynomial will find earlily its weights for dichotimizing the given training set. This 
“larger-weight” rule leads us to a greedy method to collect the important product terms 
in the following crossover operation.  

The crossover operator in our implementation selects a random number i and 
changes i terms between two mated individuals. The selected i terms in one individual 
to replace i terms in the other are those that do not exist in the other individual and 
those having larger absolute weights. If the term has already existed in the other 
individual, it is skipped and the term with a weight next to its weight is selected for 
replacing the term in the other individual of smallest weight. This process repeat until i 
terms are changed or no more terms can be found. As an example, suppose the two 
mating individuals are 
 g1 = -7x1+6x1x3-4x2x4+2x1x5-x3x4 
 g2 = 9x2-7x4x5+3x1x2-2x1x5+x3x5. 
After crossover with i=2, the two new individuals would be 
 g1

,= -7x1+6x1x3-4x2x4+9x2-7x4x5 

 g2
,= 9x2-7x4x5+3x1x2-7x1+6x1x3. 

Where g1
, is derived from g1 with the last two minor terms replaced by the first two 

large terms in g2, and g2
, is derived from g2 in a similar way. The large-weight terms 

corresponding to highly fit, short-defining, and low-order schemata (i.e., building 
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blocks) which play important roles in the success of GAs. The crossover operator 
collects such building blocks each time it is applied. Therefore it is expected to 
outperform the conventional blind string swapping. 

The reproduction process is implemented by merging simple roulette wheel 
selection and elitist model. The elitist model [22] always retains the best individual for 
the next generation. Although more sophisticated methods can be employed, these two 
simple selection rules are effective enough at the current stage. 

Architecture fitness is assessed by training an individual network with the 
error-correction procedure and recording its performance. The error-correction 
procedure converges only for those linearly separable training set, but iterates 
endlessly for those that are not. Thus an iteration bound IB is set both to prevent from 
infinite loops and to obtain a rough estimation of the performance of a discriminant 
polynomial. Due to the rule of the genetic search, its is anticipated that smaller iteration 
bounds lead to more concise solutions which converge more quickly than do larger 
iteration ones. The fitness of the currently examined polynomial is defined as the 
function of the ratio C/K, where C is the number of correctly classified patterns after IB 
iterations and K is the number of all test patterns. Because the input patterns are bipolar, 
the weights learned can only take on integer values and often the weights are zeroes 
when they should be insignificant. Hence the error-correction procedure can sometimes 
annihilate a certain number of terms in the final solutions. To exploit this merit, the 
fitness function is modified as 

 fitness

C
K
ifC K

O
N

otherwise

n

m=







<

+ 



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









  

1

       

where n > 1, m<1, O is the number of zero-weights and N is the number of used terms, 
in the hope that the genetic selection evolves to find solutions with minimum non-zero 
terms. The reason for n>1 is to shape the fitness into a convex function, making high 
fitness values more prominent, and the choice for m < 1 favors individuals with 
above-one fitness values. Note that the above fitness function is still applicable for 
real -valued inputs if we define a zero term as the one with relatively small weight. 
 
4.2 Simulation Results 

 
The proposed neural decoder was implemented in C language on Sun Sparc-II 

workstation. Unless otherwise stated, a typical parameter setting chooses a crossover 
rate 0.9, a mutation rate 0.05, and an iteration bound IB=10. Population size and 
maximum generation are chosen depending on the number of training patterns. 
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Simulation examples are taken from short-length cyclic codes. Short-length codes yield 
reasonable sizes of training sets and can be extended to useful long codes by various 
techniques in the theory of ECCs, such as product codes and nested codes [1]. They 
also serve as good examples to illustrate the effectiveness of the presented approach. 

The first example is the class of (2m-1,2m-1-m) single-error correcting Hamming 
code. The simplest nontrivial Hamming code is the (7,4) code. It contains a total of 128 
codewords, in which 16 are legal codewords and the others are composed by the 7 
erroneous codewords of Hamming distance 1 from each legal ones. The four bipolar 
information bits are denoted as x1, x2, x3, x4 and the three parity bits are x5, x6, x7. They 
are related as x5= x1x2x4, x6= x1x3x4, and x7= x2x3x4. This relationship is often described 
by a parity matrix:  

H =
















1101100

1011010
0111001

 

where the first four columns correspond to the four information bits and the last three 
columns correspond to the three parity bits. So a row is the pattern indicating a parity 
bit and its constituent information bits. 

Four independent high-order perceptrons are used to respectively decode the 4 
information bits out of a received 7-bit codeword. The training set is the whole 128 
possible codewords. The population size is set to 30, maximum generation is 10, and 
the number of used term is 20. The genetic evolution found solutions in very few 
generations indicating the existence of many solutions. Another phenomenon is that 
many solutions use only a few terms. One of the results is given below. 
 g1(x) = 14x1-2x3-2x1x2x5+8x2x4 x5-8x1x2 x3x5 x6 -2 x2x3x4x5x6 -6x1x4x5x6x7 
 g2(x) = 12x2+8x3x4x7-4x1x2x3x4x6-4x2x4x5x6x7 
 g3(x) = 12x3+8x2x5x6+8x1x4x6-8x1x2x3x6x7 
 g4(x) = 16x4-2x1+8x5x6x7+6x1x3x6-8x2x3x4x5x6-2 

This result can be verified as follows. A legal codeword and its seven error 
patterns can be represented by 
 (x1, x2, x3, x4, x5, x6, x7) 
and 
 (-x1, x2, x3, x4, x5, x6, x7) 
 (x1, -x2, x3, x4, x5, x6, x7) 
 (x1, x2,- x3, x4, x5, x6, x7) 
 (x1, x2, x3, -x4, x5, x6, x7)   
 (x1, x2, x3, x4, -x5, x6, x7) 
 (x1, x2, x3, x4, x5, -x6, x7) 
 (x1, x2, x3, x4, x5, x6, -x7) 
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respectively. To verify the solution, one can take any of the above codewords as input 
to the decoder and see what the polynomial function might reduce to. Specifically, let 
us consider the simplest function g3 in the above. If we present it with an erroneous 
word (x1, x2, -x3, x4,  x5,  x6,  x7) and replace the parity variables with their original 
constituent information variables, we have 
 g x x xxxx xxx xxxx3 3 1

2
2
2
3 4
2

1
2
3 4
2

1
2
2
2
3
3
4
212 8 8 8()= − + + +  

 = -12x3 +8 x3 + 8x3 + 8x3 

 = 12 x3 

The final term is x3 and its coefficient is positive. So if x3 =1, the perceptron 
produce 1, and if x3 = -1, it produces -1; the decoder produces the correct information 
bit x3 in response to the received word. Further verfication by presenting other seven 
codewords leads to the same result. 

From the above verfication, it is observed that each term in gi reduces to xi after the 
parity variables are replaced by their constituent information variables. If a product 
term does not reduce to xi, it is considered as redundant since it contributes nothing to 
the function gi. This observation suggests a rule to reduce the size of the training set and 
the search space: Only those terms that are reducible to xi in gi need to be generated and 
the training set for these terms are a legal codeword and its correctable error patterns. 
Because a term containing any parity variables can always be appended with other 
information variables to reduce to xi, there are at most 2m terms to be generated, where 
m is the number of parity bits. Note that the threshold w0 in the discriminant is no 
longer needed. 

The above procedure can be applied to other longer ECCs, such as a (63,57) 
Hamming code. Instead of learning the complete 263 codewords, only 64 patterns need 
to be learned and 26 terms need to be generated; a great reduction in the training set and 
the search space. 

Our next example is a BCH (15,7) double error-correcting code. This code 
contains 8 parity bits and 120 error patterns. So the search space is 256 terms and the 
size of the training set is 121. The parity matrix describing this code is  

  H =

































000101110000000

001011001000000
010110000100000

101100000010000

011101100001000

111011000000100
110011100000010

100010100000001

 

Solutions are found with initially 24 terms and 100 populations in 10 generations. 
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A typical maximum and average population fitness for g1 is shown in Fig. 2. The 
constant improvement in both the average population fitness and the maximum 
population fitness demonstrates a behavior that highl y-fit terms have been accumulated 
and that even better solutions emerge from a population of higher-fitness individuals, a 
result that a random search can never exhibit. 

We find in our computer outcomes that some bits can be decoded with only five 
positive and almost equal weights. Due to the symmetric structure of the code, all bits 
can be decoded with the same complexity. So we drop those terms having small 
weights and set the weights of the rest product terms to ones, and obtain the result: 
 g1(x) = x1+x3x4x11+x5x7x15+x2x9x13+x8x10x14 
 g2(x) = x2+x4x5x10+x1x9x13+ x6x14x15+x3x8x12 
 g3(x) = x3+x1x4x11+x2x8x12+ x7x13x14+x5x6x9 
 g4(x) = x4+x2x5x10+x1x3x11+x12x13x15+x6x7x8 

 g5(x) = x5+x2x4x10+x11x12x14+x1x7x15+x3x6x9 
 g6(x) = x6+x3x5x9+x10x11x13+x2x14x15+x4x7x8 

 g7(x) = x7+x1x5x15+x9x10x12+x3x13x14+x4x6x8 
In the above listing, each variable occurs at most once among the five terms. Any 

patterns up to two bits in error (erroneous bit xj is represented by - xj in bipolar) lead to 
at most two negative terms and thus can be corrected due to majority (summing n 
bipolar bits is tantamount to determining the majority of 1 or -1). 

Another a little more complicated but more delicate solution has the property that 
each variable occurs at most twice among the five terms and that there is a term 
consisting of all existing variables, that is 
 g1(x) = x1+x3x4x11+x5x7x15+x2x9x13+x1x2x3x4x5x7x8x9x10x11x13x14x15 
 g2(x) = x2+x4x5x10+x1x9x13+x6x14x15+x1x2x3x4x5x6x8x9x10x12x13x14x15 
 g3(x) = x3+x1x4x11+x2x8x12+x7x13x14+ x1x2x3x4x5x6x7x8x9x11x12x13x14 
 g4(x) = x4+ x2x5x10+x1x3x11+x12x13x15+x1x2x3x4x5x6x7x8x10x11x12x13x15 
 g5(x) = x5+ x2x4x10+x11x12x14+x1x7x15+x1x2x3x4x5x6x7x9x10x11x12x14x15 
 g6(x) = x6+ x3x5x9+x10x11x13+x2x14x15+ x2x3x4x5x6x7x8x9x10x11x13x14x15 
 g7(x) = x7+ x1x5x15+x9x10x12+x3x13x14+ x1x3x4x5x6x7 x8x9x10x12x13x14x15 
Thus any single and double error patterns lead to at most two negative terms and again 
can be surpassed by majority vote. 

The BCH (15,7) code is a majority decodable code [25]. Notice the last four terms 
in g1. If each of them is appended with x1, they become 
  x1 x3 x4 x11+ x1 x5 x7x15+ x1x2x9x13+ x1x8x10x14 
  = t4 + t 8 +t2 t6 + t1 t3 t7 
where ti is defined in (10). The GA finds exactly the same four check sums orthogonal 
on bit 1 as those given in [25] for the (15,7) code. Because orthogonal check sums are 
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linear combinations of the rows of the parity matrix H, they are juxtaposition of ti as in 
the form of (12) in terms of neural decoders. 

Another 15-bit double-error correcting code is the (15,6) cyclic code described by 
the parity matrix: 

 H=



































111001100000000
001011010000000

010110001000000

101100000100000

100001000010000

111011000001000
001111000000100

011110000000010

111100000000001

 

It has the similar decoding structure as the BCH (15,7) code, that is 
 g1(x) = x1+x6x11+x3x4x10+x2x8x12+x7x9x13 
 g2(x) = x2+x10x15+x4x5x9+x3x7x11+x1x8x12 
 g3(x) = x3+x9x14+x5x6x8+x1x4x10+ x2x7x11 
 g4(x) = x4+ x8x13+x2x5x9+x1x3x10+x11x12x14 
 g5(x) = x5+ x7x12+x2x4x9+x10x11x13+x1x14x15 
 g6(x) = x6+ x1x11+x3x5x8+x9x10x12+ x2x13x14 
Each variable occurs at most once, so it can correct any single and double error 
patterns. 

Due to above decoding structures, we conjecture that any t-error correcting 
majority decodable code has the decoding structure of 2t+1 terms for each bit in the 
neural decoder. Note that to make this possible the terms must contain as little variables 
as possible so as to keep the occurrence of each variable low. One good candidate for 
such terms in gi is xi. The others can be searched by  GA with a bias toward low-order 
terms when they are randomly generated in the beginning. After incorporating this 
information into our work, we are able to search the decoding structure of the previous 
two codes more quickly and of some other codes which having larger search space. 

The BCH (15,2) code has a minimal distance 10 and is four-error correctable and 
five-error detectable. The search space contains 8192 terms and the training set is 1941 
patterns, quite a large search space and training size. The following solution emerges in 
10 generations with 100 populations and initially 36 terms. The corresponding 
discriminant functions can be described as : 
 g1(x) = x1+ x5 +x8 + x11 + x14 + x2 x3+x6x7+x4x9+x12x13+x10x15 
 g2(x) = x2+ x4 +x7 + x10 + x13 + x3 x8+x1x9+x6x11+x12x14+x5x15 
where the parity matrix of this code is 
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 H=

















































111000000000000
010100000000000

100010000000000

110001000000000

010000100000000

100000010000000
110000001000000

010000000100000

100000000010000

110000000001000
010000000000100

100000000000010

110000000000001

 

Again each bit variable presents exactly once. So the 10 terms can correct any patterns 
up to four bits in error and detect the existence of those five-bit errors for which case at 
least one of the discriminant polynomials is zero. Because a single term can correct 
even errors of its containing variables , this decoder can correct some patterns of more 
than four bits in error. Although it is not listed in [25] as a majority decodable code, the 
above result confirms that BCH (15,2) can be decoded by majority logic. 

Table 1 lists some cyclic codes and their corresponding number of terms required 
for decoding. To specify a code, the code length n, number of information bits k, the 
minimum distance d, the minimum distance guaranteed by the BCH bound dBCH, and the 
exponents of the roots of the generator polynomial are tabulated like that in [2]. As the 
table listed, some t-error correctable cyclic codes can be decoded with 2t+1 terms (or 
2t+2 terms for (t+1)-error detection at the same time). These are good decoding 
structures. Some of them have been shown as majority decodable in the literature, 
while some of them have not to our best knowledge. For other codes requiring more 
terms, the listed numbers in the table are the least ones we obtain so far. Their decoding 
structures are different from the previous ones. For example, the (21,7) code with d = 8 
and dBCH = 5 uses 14 terms of various weights : positive, negative, large, and small, 
making it hard to interpret the structure it represents. Nevertheless, more simulations 
using other domain knowledge of ECC and other heuristic rules may lead to even less 
terms for correct decoding.  

 
4.3 Comparison with Digital Decoders 
 

As prescribed, the decoding algorithm for a t-error correctable (n,k) blocks codes 
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using syndrome-table method generally requires looking up a table of size 
n

ii

t 





=∑ 1

. 

For cyclic codes, the decoding algorithm using Meggitt decoders needs a table of size 
n
ii

t −
−







=∑
1
11

. The class of BCH codes has a relatively effective decoding algorithm. 

However, its error-correction capability is limited by the BCH bound. That is, if a 
code is designed to correct t0 error, in some cases it may have a minimum distance d = 
dBCH > 2t0+1; that is not all correctable errors can be corrected by the algorithm. One 
example is the (21,7) code presented in Table 1. Thus the following comparison is 
made between a Meggitt decoder and a neural decoder. 

Consider Fig. 3 the Meggitt decoder for an (n,k) cyclic code [1]. The upper half is 
a division circuit, which performs shift-and-add (in modulo 2) operations. The lower 
half consists of a comparison circuit and an n-bit shift register. After n shifts to receive 
an n-bit codeword, the comparator has to simultaneously match the result of the 

division circuit with 
n
ii

t −
−







=∑
1
11

patterns in each of the next n shifts to correct the 

received word. The complexity of this decoder mainly lies in the comparator. Figure 3 
(b) depicts a neural decoder for the same (n,k) code. Once an n-bit codeword is 
received, the k clean information bits are available by decoding them in parallel using k 
discriminant polynomials. It is not necessary to force the input to be received 
sequentially as shown in Fig. 3(b); the input may come in parallel. 
 As shown in Section 2.1, a product term of bipolar variable in a discriminant 
polynomial can be implemented by a parity network of linear connection complexity. 
The neural decoder thus can be modeled as a multilayer perceptron with a number of 
parity networks in the first-half layer, followed by a linear perceptron in the 
second-half layer, which make its realization simple in analog VLSI circuits or other 
abundant technologies [26-29]. 
 Apparently, the neural decoder with the structure of using 2t+1 terms uses less 
hardware resources. The other neural decoders using a little more terms might have this 
advantage as well after minimizing the decoders by extracting common terms among the 
discriminant polynomials. 
 
5. Discussions and Conclusion 
 
 Since the population size and the maximum generation number of the proposed 
genetic evolution are chosen depending on the number of required training patterns, 
which is in the order of 2n-k for an (n,k) cyclic code in general. Simulation examples 
shown in the previous section were taken from short-length cyclic codes to yield 
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reasonable size of training sets. In other words, efficient decoding structures of long 
length codes that can be found by the proposed approach are still limited by the 
available memory size and the affordable computation time. There are two ways to 
expand the practical value of the proposed approach to find larger length codes : 
 First, longer codes can be constructed from the codes of Table 1 by the techniques 
of interleaving. To get a (bn,bk) code from an (n,k) code, taking any b codewords from 
the original code and merge the codewords by alternating the symbols. If the original 
code can correct any burst error of length t, it is apparent that the interleaved code can 
correct any burst error of length bt. For example, by taking five copies of the (21,11) 
code and interleaving the bits, one obtains a (105,55) code. Because each of the 
individual codes can correct a burst error of length two, the new code can correct any 
burst error of length ten. 
 Instead of the coding theory itself, the second way to expand the capability of the 
proposed decoder relies on including more powerful evolutionary computation 
algorithms into our work. For example, one can combine GA and SA together to 
construct the so-called Annealing-Genetic algorithms (AGAs) which have successfully 
been applied for solving large size optimization problems, such as the Traveling 
Salesman [30] and the Molecular Binding [31]. Of course, the whole utilization of the 
power of AGA in searching for efficient decoding structures depends heavily on 
whether one can integrate proper ECC domain-knowledge with the design and selection 
of annealing schedule and genetic evolution parameters or not. There are a lot of works 
need to be done before any efficient decoding structure of larger codes can be reported. 
This will certainly be the major di rection of our future work. 
 In this paper, we have shown a possible realization of high-order neural networks 
by reducing them to multilayer perceptrons. From a practical point of view, this reveals 
that a high-order neural network can be implemented as easy as (or as hard as) a 
multilayer perceptron can be. The high-order neural networks proposed here might 
even have a simpler implementation since they use a simple learning algorithm, 
error-correcting procedure, instead of a more complicate one, for example, 
back-propagation used by multilayer perceptrons. We have also shown that a syndrome 
decoder or a one-step majority decoder can be converted directly to high-order neural 
network with 2n-k or 2t+1 product terms, respectively. This is an expected result since 
high-order neural networks have been shown to be extremely effective to the parity 
(exclusive-or) problem. 
 With the help of a genetic-type search algorithm, we have shown that a suitable set 
of product terms of a high-order neural network for a given problem (error correcting 
decoder in this case) can be found. It should be noticed that this approach can not only 
be applied to a structured problem as we discussed here but also to a some what 
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unstructured problem [32]. The proposed genetic-neural approach has found the 
majority decoders (in their equivalent forms of high-order neural networks) for some 
linear codes that have not been known as majority decodable. In other words, this 
algorithm can also serve as a searching algorithm for majority decodable codes and the 
majority decoding equations for them. 
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n k d dBCH Roots of Gen. Poly No. of Terms 

15 7 5 5 1,3 5 
15 6 6 6 0,1,3 5 

15 5 7 7 1,3,5 25 

15 4 8 8 0,1,3,5 8 
15 3 5 5 1,3,7 5 

15 2 10 10 0,1,3,7 10 
17 8 6 6 0,1 14 

21 12 5 5 1,3 23 

21 11 6 6 0,1,3 5 
21 10 5 5 1,3,7 19 

21 9 6 5 1,3,9 5 
21 8 6 6 0,1,3,9 10 

21 8 6 6 0,1,5 12 

21 7 8 5 1,3,7,9 14 
21 6 8 6 0,1,3,7,9 11 

21 6 7 7 1,3,5 12 
 

Table 1. Some Cyclic Codes and Their Corresponding Number  
of Terms Required for Decoding.
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Figure 1. The basic structure of the simple genetic algorithm 
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Fig. 2 Best-of-Generation Results (max) and Generation Average Results (ave) of 10 

Generations for the Neural Decoder of Bit 1 of the BCH (15,7) Code. 
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Fig. 3 (a) A Meggit Decoder, (b) A Neural decoder 


