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Abstract
A content-based retrieval model for tackling the mismatch

problems specific to music data is proposed and implemented.
The system uses a pitch profile encoding for queries in any key
and an n-note indexing method for approximate matching in
sub-linear time. A distinct function that extracts key melodies
for query suggestion is developed. The Web-based system
provides flexible user interface for query formulation and
result browsing. Users can search the system by a short
sequence of notes, by uploading a file created by singing, or by
clicking suggested key melodies without input. Experiments
show that the pitch profile encoding and a 3-note indexing are
able to overcome the key mismatch problem and the random
errors caused by pitch error, note deletion and insertion. The
use of extracted key melodies improves performance over
direct search of the music database. For the type of burst
mismatch, a query expansion approach is applied.

Keywords: Music retrieval, key melody extraction, pitch
profile encoding, music indexing, approximate string
matching, query suggestion

1. Introduction
The problem of music retrieval based on surrogates of

music, such as titles, composers, or subject classification, has
been solved by many of the existing retrieval systems. In
contrast, retrieval of a piece of music based on the music
contents, especially based on an incomplete, imperfect recall of
a fragment of the music, has not yet fully explored. The desire
for retrieving music data by contents may arise in several
situations. A composer may like to know if a melody occurs to
him/her has already appeared previously. A student may like to
analyze music data by associating similar content features. A
casual user may like to recall the name of the song when most
of that music slips from his/her memory except a few
memorable melodies.

Although content-based music retrieval is interesting,
there are several tasks to be overcome before a pragmatic
retrieval system can be finished. First, since melodies are
recognizable regardless of what key they are sung in, the
system must allow users to input notes in any key. Second,
users may submit, either by singing or by keyboard input, an
imperfect music fragment not exactly match the one in the
music collection. This is a situation similar to the vocabulary
mismatch problem in text retrieval where users’ queries
contain terms that do not match the terms used to index the

 relevant documents. Therefore some approximate match
functions for occasional pitch error and random note deletion
and insertion are desirable. Also those means in text retrieval
to reduce the vocabulary mismatch such as query term
suggestion or relevance feedback would be helpful. There are
still other types of vocabulary mismatch specific to music data,
such as consolidation and fragmentation [1]. In consolidation, a
sequence of notes is combined into one whose duration is their
sum and whose pitch is their average. The reverse of such a
case is the fragmentation. In some circumstances that a series
of continuous consolidations or fragmentation occurs, the
mismatch problem will lead to a worse case than that from the
random note insertion or deletion. In addition, music data are
not easily perceived visually and expressed literally, especially
for those with very few music training. Any facilities for
efficient input, browsing, and selection would help in query
formulation and result inspection.

Previous works on content-based music retrieval have
focused on one of the above problems or another. Pfeiffer et al.
[2] developed a set of tools which extracts fundamental
frequencies as music features and which uses correlation for
matching to identify occurrence of commercial music in a
query-by-example approach. Wold et al. [3] proposed an
approach to classify sounds for similarity search based on
acoustical features consisting of loudness, pitch, brightness,
bandwidth, and harmonicity. Although these features can be
computed from the waveform representation, most of them do
not bear the music contents familiar to most users. Foote [4]
also took the approach to extract music features from signals.
For similarity matching, he used a tree-structure vector
quantizer for reducing computation. All the above approaches
have avoided the query problem somewhat by using audio
examples as the query.

Another lines of researches are to pursue a more
straightforward way with the approaches of query by playing,
humming, or singing. Hawley [5] developed a system that
allows a note sequence being entered via a MIDI keyboard. It
then searches the tunes whose beginnings exactly matched the
input. Ghias et al. [6] developed a system that allows input
from a microphone. This is followed by a process that converts
the input into a melodic contour of only three symbols for key-
invariance. The contour is then matched against a collection of
183 songs based on an approximate string matching algorithm
which allows for note transposition, deletion, and insertion.
The limitations of the system are the time-consuming string
matching and the lack of accuracy due to the relatively few
symbols in representing the melodies. McNab et al. [7]
developed a similar application also with acoustic input,
melody transcription, pitch encoding, and approximate string
matching. This Web-based application provides a number of
match modes including approximate matching for “interval and
rhythm” and “contour and rhythm”. The approximate matching
on 9400 songs based on dynamic programming takes 21
seconds. Although a faster state matching algorithm [8] has
been implemented, it does not discriminate as well as dynamic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.  To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR '99   8/99 Berkley, CA  USA
Copyright 1999 ACM 1-58113-096-1/99/0007 . . . $5.00

176



programming due to the different distance measure of the
algorithm. Chen et al. [9] also developed a system allows for
acoustic input and key-invariant encoding, but the Hamming
distance-like measure is inadequate for the needs of a music
database. As there exits software in the Internet that
transcribes acoustic input to melody strings (for example, see
[10]), our focus on this topic is to develop an integrated system
for efficient and effective music retrieval.

In this paper, a content-based music retrieval model
aimed at tackling the foregoing problems is presented. A pitch
profile encoding is used for allowing queries in any key levels
and an n-note indexing method is adopted for approximate
matching in sub-linear time. The most distinct feature of this
system is the key melody extraction module that extracts
representative and memorable melodies from the music
collection for query suggestion and effective retrieval. Users
can search the key melodies with any pieces of familiar
fragments occur to them. Relevant key melodies can be
matched at a lower score without severely interfered by other
irrelevant ones due to the relatively condensed musical data.
The relevant key melodies can then be easily identified and
used to pull out their corresponding tunes from the music
collection. The overall effect is that the response time and
search failure are both reduced even with more discrepancy
between queries and the music data.

The system is developed on the Web and provides flexible
user interface for query formulation and result browsing.
Several input methods can be used to make query in this
system. The system can randomly generate a set of key
melodies for users’ browsing, listening, and selection such that
making queries without any musical data input is possible.
Users can also choose to input a short sequence of notes with
simplified notation to quickly focus on the pieces of music they
are interesting. Another option is to make a query by uploading
a file created locally by singing or humming with some melody
transcription software available in the Internet. In any way, the
system responses a playback button, a set of automatically
expanded query candidates, and a result set based on the
current query. The playback button allows users to hear what
they enter, the query candidates are ready to be submitted in
case of search failure for the current query, and each of the key
melodies or music pieces present in the result set can be
played and selected for further searching.

The rest of the paper is organized as follows. Section 2
presents the key melody extraction algorithm. Section 3
describes the proposed music retrieval model, where the
encoding, indexing, retrieval models, and user interface are
discussed. Section 4 reports our experiments in evaluating
several retrieval approaches. Finally Section 5 concludes this
paper and presents some future work to be finished.

2. Key Melody Extraction
Key melodies are the representative fragments of music.

They may be the themes or other memorable parts that people
may easily recall once they heard the name of the song or part
of it. Thus it is worthwhile to extract them to meet possibly
most users’ queries and at the same time to reduce the
response time as matching against them requires less
computation. Moreover, they can be used as the abstracts of
the songs and hence speed up (at least in a network
environment) the process of “browsing” and selection, an
important design in interactive retrieval systems.

As Hsu et al [11] pointed out, thematic features of music
such as melodies, rhythms, and chords can be represented in
string form. Based on this representation, they have proposed

an algorithm to extract repeated patterns as key music features.
Their algorithm uses a correlative matrix and has time
complexity of O(n2).

Repetition is one of the basic composing rules [12] and is
thus a clue for automatic key melody extraction. Repetition
also occurs in text documents: documents concentrating on a
topic tend to mention a set of words in a specific sequence a
number of times. Based on this assumption, Tseng [13] has
proposed a fast algorithm for multilingual keyword (or key-
phase) extraction. This algorithm has some distinct features: it
requires no extra resources such as lexicons, corpora, training
data, or NLP parsers; the threshold of term frequency, the only
parameter in this algorithm, is easily tuned (usually set to
value 1 or 2); key phrases of any length can be identified;
when used in character level, single words or word stems can
be identified as well as multiple-word phrases; the accuracy
rate is 90% for bibliographic data and 86% for full-text news
articles [14]. These features meet the requirements for our
application in the key melody extraction. Although the
algorithm can be applied, some minor modifications are
needed. The original algorithm may extract patterns not exist
in the original text when the alphabet in the input stream
contains too few symbols. Although this case is not likely to
happen in ordinary text, this could happen in the melody
strings. A simple remedy is to insert special tokens to separate
those intermediate repeating patterns that are not adjacent in
the original input string. Another modification is to omit the
stop lists or stop rules for filtering illegal terms. Although the
extracted melody may start and end anywhere in a piece of
music, there are no “illegal strings” as those in the text case.
Hence, there is no need to filter out any such melodies. The
modified version of the algorithm is shown as follows.

1. Convert the input string into a LIST of 2-note sequence.
2. Do Loop
2.1 Set MergeList to empty.
2.2 Put a separator to the end of LIST as a sentinel and set

the occurring frequency of the separator to 0.
2.3 For each adjacent sequences K1 and K2 in LIST, do

If K1 is the separator, Go to Step 2.3.
If K1 and K2 are mergeable and both of their

occurring frequencies are greater than a threshold,
then

Merge K1 and K2 into K and push K into MergeList.
Accumulate the occurring frequency of K.

Else
If the occurring frequency of K1 is greater than a

threshold and K1 did not merge with the term
that precedes in LIST, then

Put K1 in FinalList.
If the last element of MergeList is not the separator,
then

Push the separator into MergeList.
2.4 Set LIST to MergeList.
  Until LIST is empty.
3. Filter the FinalList and sort the result according to some
    criteria.

Table 1 is an execution example of the algorithm. After
the first iteration in step 2, only the last item in list L is put in
the final list because it does not merge with others and it
occurs more than the threshold frequency. All the other items
in list L are discarded because they merge with others or they
occur so rarely that they are assume to be of no importance.
Similar cases happen in the second iteration, where item CCC
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is put in the final list and all other separators are discarded. To
show the effect of the separator, consider the input string :
“CCCDCCC”. If the separator is not inserted and handled
properly, the list L = (CC:4, CC:4, CD:1, DC:1,
CC:4, CC:4) would be merged into L1 = (CCC:2,
CCC:2) after iteration 1, and then L2 = (CCCC:1) after
iteration 2. The items CCC in L1 are not put in the final list.
Instead, since they are adjacent in L1, they are merged into L2,
resulting in a pattern not present in the original string.

Table 1. An execution example of the algorithm. The number following
the semicolon is the occurring frequency.

The algorithm consists of three major steps. The first step
requires only linear-time complexity for converting the input
string into a list. The second step involves condition testing
and merging of the note sequences. This process is repeated
until no element remained to be merged. Because it loops m
times to produce a melody string of length m, the total number
of testing and merging is bounded by mn, where n is the length
of the input string and m is the length of the longest melody
(substring). For each testing, the term frequency is looked up
to determine whether to discard the term or not. Since looking
up a term frequency through hashing requires only constant
time on average [14], the second step is bounded by O(mn) on
average. The complexity of the last step depends on m, the
length of the longest string extracted and k, the number of
strings in the final list. Since the extracted melodies are used
for matching the users’ queries, it would be advantageous to
retain only those distinct longest ones. This would reduce the
number of extracted melodies without lost of any information.
An operation like this would require sorting on the extracted
melodies and comparing the short ones to the long ones. This
would be bounded by O(mk2), if a linear-time string matching
algorithm is used. Since k is normally far smaller than n, the
total complexity of this algorithm is bounded by O(mn) on
average.

The extraction algorithm is implemented in Perl [15], for
Perl provides convenient manipulators for strings, lists and
hashes. Two sets of MIDI (Musical Instruments Digital
Interface) files are tested. For 1052 melody strings derived
from each track of 135 Chinese pop songs, the average length

is 746 notes and the average longest repeated melodies
contains 149 notes, a ratio of 149/746=20% (the average over
all ratios is 23%). The extraction time for 70% pop melody
strings is within 4 seconds and 80% within 9 seconds. For 203
melody strings derived from each track of 30 classic music, the
average length is 973 notes and the average longest repeated
melodies contains 135 notes, a ratio of 135/973=18% (the
average over all ratios is 14%). The extraction time for 70%
classic melody strings is within 4 seconds and 80% within 10
seconds. The above statistics show no major different between
these two types of music.

3. A Music Retrieval Model
The architecture of the developed system for music

retrieval is shown in Figure 1. Music in MIDI format is
collected from the Internet. Usually a MIDI file consists of
several tracks, each track records the score information for an
instrument. From these files, melodies, rhythms, and chords
information can be extracted. Since melodies bear major
contents of music, only they are extracted at the current stage.

Figure 1. The music retrieval architecture.

The melody strings can then be analyzed by the above
extraction algorithm to get repeated patterns. The repeated
patterns are matched against the original MIDI files to
reconstruct back the original tunes in MIDI format. These
tunes consist of another MIDI collection to be played on users’
request at the process of result browsing and selection.

Before the melody strings are indexed, they are encoded
to allow input in any key. We use symbols Pn, Mn, and R for
such encoding, where P stands for an ascending note compared
to the note that precedes, M a descending note, n the number
of semitones ascending or descending, and R a repeating note.
The first note is retained for restoring the original melody. So
“E4 E4 E4 E4 G4 C4 D4 E4” in standard pitch name in the
song “Jingle Bells” is encoded into “ E4 R R R P3 M7 P2 P3”.
It can be verified that m random errors caused by pitch error or
note deletion and insertion in the original string will result in
at most 2m errors in the encoded string, an error ratio of 2.
This will require a more error-tolerant retrieval model for the
encoded strings to maintain the same level of performance.

Usually MIDI files contain more than score information.
They also hold other text data, such as titles, composers, track
names, or other description, provided by their creators. To be
able to exploit  such information,  the data extracted from the

Assume input string = ”CCCDCCCECC”, the threshold = 1
and the separator = X.
Step 1: create a list of 2-note

L =(CC:5, CC:5, CD:1, DC:1, CC:5,
CC:5, CE:1, EC:1, CC:5)
Step 2: merging
After 1st iteration:
  merge L into L1=(CCC:2, X:0, CCC:2, X:0)
  drop : (CC:5, CC:5, CD:1, DC:1, CC:5, CC:5,

CE:1, EC:1)
  FinalList : (CC:5)
After 2nd iteration:
  merge L1 into L2 = (X:0)
  drop : (X:0, X:0)
  FinalList : (CC:5, CCC:2)
After 3rd iteration:
  merge L2 into L3 = ( )
  drop : (X:0)
  FinalList : (CC:5, CCC:2)
Step 3 : filtering : the item CC may be removed since it is a 

substring of the other.
user interface
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Figure 3. An user interface for making query

Figure 2. A melody document example in SGML-like format

MIDI files are stored in an SGML-like format as in Figure 2.
With an existing text search engine, these text information can
be indexed and used for queries as well as the melody strings,
both within the same indexing scheme and user interface.
Thanks to this merit, we have indexed these data with a
retrieval system which we have developed for our library’s
OPAC system [16] without any code revision in the indexing
module. Only the user interface of the system is slightly
changed.

N-gram indexing has been us ed in several retrieval tasks
such as those for OCR-degraded text [17] and for documents in
multiple languages [18]. This is possible because the n-gram
approach imposes no assumption on the input text. N-grams are
any n consecutive characters in a text. Since the basic element
in a melody string is a note, we apply the n-gram method in
note level (or in word level for text data). In our n-note
approach, all m-notes, where m ranges from 1 to n, are all
indexed. The shorter m-notes will match the input query in the
presence of random errors, while the longer m-notes will favor
the ones with more accurate melodies. The weight of each m-
note in queries is given by 2(m-1)+1 while the weight of each
m-note in documents takes the value of 1 or 0, indicating its
presence in the documents or not. The similarity between
document di and query qj is then calculated by

∑
∑

=

== T

k kj

T

k kjki
ji

q

qd
qdSim

1 ,

1 ,,),(

where T is the total number of indexed m-notes. We have tried
2-note and 3-note indexing. Their performance can be seen in
the experiments below.

As mentioned previously, the system provides several
facilities to help query formulation. As shown in Figure 3, a
button is provide for random generation of a batch of key
melodies, from which users could choose one or more as their
initial query to retrieve the whole tunes or similar melodies. If
none were suitable, another random set could be requested.
Users with, for example, a weak knowledge of music could
choose this approach. Since this approach can be easily
implemented by querying the system with a few random notes,
there is no reason not to do so. However, without key melodies
extracted as suggested items, the browsing and selection
process definitely takes users more efforts. This query
suggestion approach might be improved by clustering the key
melodies in advance and presenting the results in a hierarchical
way. We plan to discuss this issue in future work.

Users may also create a MIDI file locally and upload the
file as a query. They may use their own auxiliaries or any
music transcription tools available for creating such a file.
Since a MIDI file can hold scores for multiple instruments, we
have a special design that matches each track of notes
according to the specified instrument, if this description is
available in the file. Another similar function a user may
exploit is to point to a MIDI file by giving its URL and ask the
system to fetch it and search accordingly.

As to quickly making a query that directly focus on the
interested tunes, users may input a sequence of notes in several
notations. One internal notation is the standard pitch name:
“C4 D4 …  G4 A4 B4” for “Do Re …  Sol La Si” in the fourth
octave. Another simplified notation uses the digits “1 2 …  5 6
7” to stand for the seven pitches and operators “#”, “-“, and
“+” following a digit to stand for a sharp, one octave below,
and one octave above, respectively.

Additionally, the system allow queries by composers,
titles, instruments, file names, and other text data with the
same indexing scheme, i.e., n-note (n-word) indexing. All
these text information are collected from the MIDI files as
described. This makes the system an integrated one that can be
searched by contents and by surrogates as well.

A successful retrieval might involve a series of query
reformulation and result inspections. As shown in Figure 4, the
system assist users in these processes by providing a playback
button for users to  make sure what they enter,  a set of query

<mir><composer>Schubert</composer>
<title>Ave Maria</title>
<MIDI_file>/classic/sch_ave-4-1.mid</MIDI_file>
<track_No>4</track_No>
<instrument>not specified</instrument>
<key_melody_No>1</key_melody_No>
<frequency>2</frequency>
<melody>As5 A5 As5 D6 C6 As5</melody></mir>
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Figure 4. A search example.

candidates for other possible query formulations, and
hyperlinks and check boxes on each returned items for
relevance feedback by mouse clicking. The playback button is
implemented by creating a MIDI file dynamically based on the
input if the query is a sequence of notes in any notations
allowable. The query candidates are generated according to a
prior analysis of the MIDI collections. The types of mismatch
that can not be overcome by the key-invariant encoding and n-
note indexing are identified and used as guidelines for query
suggestion. As shown in the experiment below, the most
salient type of mismatch is a series of consolidation or
fragmentation. So query candidates are generated accordingly.

4. Experiments
Although the system provides flexible ways for query

formulation and friendly interface for query suggestion and
relevance feedback, retrieval effectiveness is highly depends
on the indexing and retrieval models. It is important to see
what effects the mismatch problems specific to content-based
music retrieval might have on the foregoing retrieval methods.
Since each music work is created so uniquely, it is very likely
that any two pieces of music under the same subject share little
in common. Thus traditional recall and precision metrics in
text retrieval is not used here. Instead, the experiment is to test
the ability of various methods to retrieve a complete music
work from a user’s recall of a fragment of the music.

The ability to correct the key mismatch problem can be
tested by comparing two representation schemes: one with key-
invariant encoding and one without. By varying the value of n,
it can be shown to what degree the n-note indexing can handle
the mismatch problem caused by random pitch error or note
insertion or deletion. The effects of consolidation,
fragmentation, and other mismatch cases can be analyzed by
examining users’ queries and music data. Last, whether the
use of key melodies improve the retrieval effectiveness can be
illustrated by comparing direct retrieval of the music collection
with indirect retrieval by first searching the key melody
collection and then the music collection. Since the key
melodies are exact subsequences of the original ones, the
correct pieces of music can be retrieved without difficulty once
their key melodies are found. Thus there are six retrieval
modes to be tested in this experiment:

key melody search with original pitch encoding and 2-note
indexing

1. direct music search with original pitch encoding and 2-
note indexing

2. key melody search with key-invariant encoding and 2-
note indexing

3. direct music search with key-invariant encoding and 2-
note indexing

4. key melody search with key-invariant encoding and 3-
note indexing

5. direct music search with key-invariant encoding and 3-
note indexing

Eight users are invited in this experiment. Three of them
had a few years of training on piano, one had a year of training
on guitar, and the other four had only minimum musical
training in school. Subjects are each presented with a title list
of songs, consists of 30 classic music and 135 Chinese pop
music. Queries are formulated based on their best recall of the
songs they choose. If they cannot recall the melodies at once,
they are allowed to listen to the music and make their queries
based on their perception of the tunes. Subjects are suggested
to examine the first 100 results. If they cannot find the target
within the suggested range, they are advised the cause of
mismatch and allowed to modify their queries accordingly. For
example, in retrieval mode 1 the correct beginning pitch level
is given if retrieval failure occurs due to key mismatch. Such
modifications may allow us to induce more guidelines for
query suggestion. Before formal experiments, subjects are
allowed to practice the whole process with two songs. A total
of 20 songs are searched in this experiment.

Table 2 shows the queries made by the subjects. The first
seven songs are classic music and the remaining are pop
music. For reference, the classic music searched are Toreador
Song by Bizet, Piano Sonata No. 4 by Beethoven, Ave Maria
by Schubert, Morning Mood by Grieg, and The Four Seasons
1st movement by Vivaldi. Two subjects choose the same
melody fragment from Toreador Song for making queries.
Their queries are in song 1 and 2 in Table 2. Another two
subjects choose the same fragment from Piano Sonata No. 4,
but with different melody length. Their queries are in song 3
and 4. The other 3 classic music are in song 5 to 7, in the order
listed above. For each song, two different
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Song
mode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 3 2 15 7 1 3 3 12 7 1 10 7 1 1 1 77 6 35 52 6
2 20 4 6 4 3 13 12 14 21 5 96 27 36 22 5 189 27 44 119 40
3 26 12 3 1 1 38 13 156 102 85 26 63 43 1 11 85 2 7 49 3
4 88 63 9 4 3 6 13 245 256 78 421 232 53 8 7 356 4 8 18 53
5 26 4 1 1 1 38 9 5 13 8 3 24 19 1 23 63 1 1 8 1
6 87 46 2 1 1 4 8 16 24 12 79 72 30 1 54 222 2 1 3 2

Table 3: Hit positions for 20 songs in 6 retrieval modes.

song type query length

I G5 A5 G5 E5 E5 E5 D5 E5 F5 E51 I 5 6 5 3 3 3 2 3 4 3 10

M C6 C6 D6 D6 C6 C6 A5 A5 A5 A5 A5
G5 A5 B5 A52

I 1+ 1+ 2+ 2+ 1+ 1+ 6 6 6 6 6 5 6 7
6

15

I G5 E5 C5 E3 G5 C63 I 5 3 1 3 5 1+ 6

M As5 G5 D5 G5 As5 C6 E6 D6 C6 E6
As54

I 5 3 1 3 5 1+ 3+ 2+ 7 1+ 3+ 5
12

M As5 A5 As5 D6 C6 As55 I 1 7- 1 3 2 1 6

M B4 Gs4 Fs4 D4 Fs4 Gs46 I 5 3 2 1 2 3 6

M Gs6 Gs6 Gs6 Fs6 E6 B67 I 3 3 3 2 1 5 6

M E5 D5 C5 C5 D5 E5 G5 A5 B5 C6 C6
A5 G5 E5 G5 15

8
M 3 3 2 2 1 1 1 1 2 2 3 3 5 5 6 6 7

7 1+ 1+ 1+ 1+ 6 6 5 5 3 3 5 5 30

M C6 C6 C6 C6 A5 G5 A5 F5 F5 G5 A5
D5 12

9
M 5 5 5 5 5 5 5 5 3 3 2 2 3 3 1 1 1

1 2 2 3 3 6- 6- 24

M Fs6 A6 B6 B6 A6 A6 Fs6 E6 D6 E6
Fs6 E6 D6 B5 14

10
M 3 3 5 5 6 6 6 6 5 5 5 5 3 3 2 2 1

1 2 2 3 3 2 2 1 1 6- 6- 28

M E5 G5 E5 E5 D5 E5 E5 711 M 3 3 5 5 3 3 3 3 2 2 3 3 3 3 14

I C6 D6 E6 G6 G6 G6 E6 D6 D6 D6 D6
E6 D612

I 1 2 3 5 5 5 3 2 2 2 2 3 2
13

M G5 D6 D6 E6 C613 I 5 2 2 3 1 5

M A5 E5 G5 G5 E5 D5 C5 D5 E5 A514 I 6 3 5 5 3 2 1 2 3 6 10

M C5 C5 C5 C5 C5 D5 C5 D5 D5 D5 D5
D5 G5 A515

I 1 1 1 1 1 2 1 2 2 2 2 2 5 6
14

M C5 C5 C5 A5 G5 D5 D5 D5 E5 D5 C516 I 1 1 1 6 5 2 2 2 3 2 1 11

M C7 D7 E7 E7 E7 E7 E7 E7 E7 D7 C7
D7 E717

I 1 2 3 3 3 3 3 3 3 2 1 2 3
13

M Fs5 Gs5 B5 Cs6 Cs6 B5 B5 B518 I 5 6 1+ 2+ 2+ 1+ 1+ 1+ 8

M C5 C5 D5 D5 E5 E5 F5 F5 A4 A419 M 1 1 2 2 3 3 4 4 6- 6- 10

M G5 D6 D6 E6 C6 G5 D6 D6 E6 C6 E6
E6 B5 D620

I 1 5 5 6 4 1 5 5 6 4 6 6 3 5
14

Table 2: Queries made in the experiment.

queries are made: one in absolute pitch using standard notation
for mode 1 and 2, and the other in relative pitch using
simplified notation for mode 3, 4, 5, and 6. The second column
indicates the type of the queries. Type I stands for initial
queries and type M for modified queries. The number of notes
used in the queries is shown in the last column.

mode 1 2 3 4 5 6
1 18 12 15 9 12
2 2 10 13 4 8
3 6 10 15 1 6
4 5 5 4 2 1
5 9 15 14 18 13
6 6 12 10 19 3

Table 4. Comparisons between any two retrieval modes. The number in
row i and column j indicates the number of cases that mode i outperforms
mode j. For examples, there are 18 cases that mode 1 leads to earlier hits
compared to mode 2. Since there is a total of 20 cases, numbers over half
of the total cases are shown in bold face for ease of reading.

The retrieval results are shown in Table 3. In the results
from mode 1 and 2, the use of key melodies improve
performance since all the songs, except song 3 and 4, can be
found earlier in the hit list. Similar situations occur in
comparing retrieval results from mode 3 with 4 (15 out of 20
cases), and 5 with 6 (13 out of 20 cases). To facilitate
comparison, Table 4 shows the number of cases that one
retrieval mode outperforms the other.

By comparing mode 1 with 3 and 2 with 4, it suggests that
the use of absolute pitch encoding performs slightly better (12
out of 20 cases and 13 out of 20 cases, respectively) than those
using key-invariant encoding. However, this is under the
condition that users input in a correct key or in a closely
related key (for example, see the queries in song 1 and 2 or 3
and 4 in Table 2). If an incorrect key is chosen in the queries,
search failure can be expected. Table 2 shows that only 3
queries are made in correct pitch level at the first time without
further query modification.

The relatively less indexing symbols resulting from key-
invariant encoding leads to inferior discrimination among
music documents. Thus a larger n for n-note indexing should
be used for generating more indexing terms to maintain the
performance. The superior performance in mode 5 compared to
3 and mode 6 compared to 4 confirms this observation.

The mismatch caused by consolidation or fragmentation
cannot be easily solved by n-note indexing. Some query
reformation is needed as shown in Table 2. Inspection of the
music data reveals that there is no serious consolidation or
fragmentation in the five classic music, so no modification is
made for the queries in the simplified notation. Even though
the queries do not exact match the melody strings stored in the
collection, the key-invariant encoding and the n-note indexing
work as desired. For the popular songs in the experiment,
however, each notes are repeated in at least 5 cases (song 8, 9,
10, 11, and 19). The burst errors makes n-note retrieval fail,
requiring query reformulation either by users manually or by
the system automatically, if a prior knowledge of this type of
mismatch is known.
5. Conclusions and Future Work

Several types of mismatch specific to content-based music
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retrieval are discussed. Strategies, such as key-invariant
encoding and n-note indexing, to overcome these mismatches
are presented. Experiments shows that key mismatch and
random errors can be handled by the proposed strategies. For
burst errors caused by a series of consolidation or
fragmentation, query expansion is required manually or
automatically. This can be facilitated by a flexible and friendly
interface. One distinct feature of the developed system is the
key melody extraction. Based on the assumption that
memorable segments are often repeated in music, an algorithm
is presented for efficient extraction. Note that by appropriate
quantization to eliminate small variations on the input
sequences, this algorithm can also apply to audio waveforms
for repeated pattern extraction. This might help in other audio
retrieval applications.

In this work, we assume music in e ach track from the
MIDI files is monophonic, i.e., no notes occur simultaneously
in the note sequence. This assumption eases the work of
matching the extracted melodies against the original MIDI files
for obtaining the sub-MIDI files, because no garbling is made
during the melody extraction and the MIDI reconstruction
processes. However, retrieval performance is affected if
polyphonic melodies are encountered: users tend to have more
difficulty in preparing a query that contains simultaneous
notes. Uitdenbogerd et al [19], discussed 4 algorithms for
extracting a melody from polyphonic music. They showed that
a simplest technique in which the extracted melody consists of
highest pitch-notes appearing in any track is the most effective.
With this technique, the discrepancy between queries and
polyphonic melodies may be reduced, which in turn may thus
lead to less search failure.

Repetitions are observed in almost every music work.
However, repetitions may have slight variations to enrich the
melody and to facilitate its better learning. For these cases,
Bakhmutova, et al [20], has presented a human-computer
procedure for revealing similar melodies, i.e., melodies of not
only identical repetitions, but also fragments that were close in
some sense. This procedure requires a learning stage to
estimate some parameters by forming a set of melodies with
several versions each. Besides, the final decision about
closeness of melodies is made after listening, by preferably
playing melodies in the same rhythm if their rhythms are
different. For efficient key melody extraction allowing
variations, fully automatic methods are worth of further
investigation.

Future work will also examine the possibility of
clustering the extracted key melodies in a hierarchical way for
efficient browsing and navigation. Retrieval effectiveness may
be further compared with other retrieval modes under different
circumstances for best design rules. This might involve
variations on different weighting schemes and indexing
methods, or comparisons between conventional retrieval
models and other approximate string matching approaches.
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